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In performing atomic cluster calculations of local electronic structure defects in ionic
crystals, the crystal is often modeled as a central cluster of 5 to 50 ions embedded in an
array of point charges. For most crystals, however, a finite three-dimensional repeated
array of unit cells generates electrostatic potentials that are in significant disagreement with
the Madelung (infinite crystal) potentials computed by the Ewald method. This is illustrated
for the cubic crystal CaF2. We present a novel algorithm for solving this problem for any
crystal whose unit cell information is known: (1) the unit cell is used to generate a neutral
array containing typically 10,000 point charges at their normal crystallographic positions;
(2) the array is divided into zone 1 (a volume defined by the atomic cluster of interest),
zone 2 (several hundred additional point charges that together with zone 1 fill a spherical
volume), and zone 3 (all other point charges); (3) the Ewald formula is used to compute the
site potentials at all point charges in zones 1 and 2; (4) a system of simultaneous linear
equations is solved to find the zone 3 charge values that make the zone 1 and zone 2 site
potentials exactly equal to their Ewald values and the total charge and dipole moments equal
to zero, and (5) the solution is checked at 1000 additional points randomly chosen in zone
1. The method is applied to 33 different crystal types with 50 to 71 ions in zone 1. In all
cases the accuracy determined in step 5 steadily improves as the sizes of zones 2 and 3 are
increased, reaching a typical rms error of 1 µV in zone 1 for 500 point charges in zone 2
and 10,000 in zone 3.

Keywords:  Crystal cluster calculations; Madelung potential; crystal field potential; Ewald
potential; Madelung constant.
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1. Introduction

In performing atomic cluster calculations of local electronic structure defects in ionic
crystals, the crystal is often modeled as a central cluster of ions embedded in an array of
point charges designed to reproduce the electrostatic field produced by the rest of the
crystal. As has been pointed out in the literature, electrostatic potentials computed over a
finite volume of an infinite periodic crystal lattice can lead to serious errors, and these
errors do not necessarily diminish as the volume is increased. This computational problem
was cleverly solved by Ewald in 19211.

For some crystals, the standard crystallographic unit cell has zero electric dipole
moment and small values of higher electrostatic moments; an array built from these unit
cells will provide potentials in good agreement with the Madelung potentials for the infinite
crystal computed by the Ewald summation method (described in Appendix B). Examples
are the cubic crystals NaCl, KMgF3, MgO, and SrTiO3. However, most crystals have unit
cells with significant electrostatic moments, and even a large array of these unit cells can
yield inaccurate potential values2,3. The Evjen method4 can be used to symmetrize ions on
the corners, edges, and faces of the unit cell. However, only if the resulting unit cell has
zero dipole moment is the sum unconditionally convergent, and even then a correction term
is required in most cases5.

We have considered a number of approaches for obtaining point charge arrays that
generate the Madelung potential using the crystal CaF2 as an example. These include (1)
using a large array of standard unit cells, (2) using a large array of Evjen unit cells, (3)
using an array of point charges designed to mimic the space terms in the Ewald summation,
and (4) placing point charges at fixed locations outside the cluster volume and solving a set
of simultaneous linear equations to determine the optimal charge values. These
investigations are reviewed in section 2.

In section 3 we describe an improved method designed to reproduce accurately the
Madelung potential within any atomic cluster for any crystal whose unit cell information is
known. The method can be summarized in the following steps:

(1) A 2N  × 2N  × 2N  array of unit cells is used to generate an array containing typically
10,000 point charges at their normal crystallographic positions and with their ground-state
ionic charges.

(2) The array is divided into zone 1 (a volume containing the atomic cluster of interest),
zone 2 (additional ions that together with zone 1 fill a spherical volume), and zone 3 (all
other point charges)

(3) The Ewald formula is used to compute the site potentials for all point charges in
zones 1 and 2.

(4) A system of simultaneous linear equations is solved to find the zone 3 charge values
that make the zone 1 and zone 2 site potentials exactly equal to their Ewald values and the
total charge and dipole moment equal to zero.

(5) The solution is checked at 1000 randomly chosen points within zone 1.
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We have applied our new method to 33 different crystals. The results are summarized
in Section 4 and presented in more detail in Appendix A. They show that the method is
capable of determining point charge arrays that can reproduce the Madelung potential within
a cluster of 50 atoms to a typical rms accuracy of 1 µV.

Appendix B reviews the Ewald method for computing the potential within an infinite,
periodic array of point charges and presents it in a form that permits immediate
implementation by a programmer who does not have a background in crystallography.

2. Various Approaches to Finding Point Charges that Generate the
Madelung Potential

Large arrays of standard unit cells

It might be thought that a sufficiently large array of unit cells would reproduce the
crystal field closely, at least in the center of the array. However, most crystals have unit
cells with non-zero dipole moment and this produces a component to the electric field that
(1) varies linearly with position, in violation of the periodic crystal symmetry, and (2) is
not reduced by increasing the number of unit cells in the array. The reason for the latter is
that the dipole field is produced by unbalanced charges at the outer surfaces of the array,
which can be thought of as charge pairs separated by a distance R, the size of the array. If
the array is increased in size, the field produced by each charge pair falls off as R–2, but the
number of charges at the surfaces grows as R2, resulting in a constant field gradient.

As an example, consider the cubic crystal CaF2. It has a 12-ion unit cell, with fractional
coordinates given in Table I. To convert to Cartesian coordinates, multiply all values by
5.453 Å. The full crystal lattice is generated by translating this unit cell in x, y, and z by
integer multiples of the lattice constant 5.453 Å.

Table I. Location of ions in the standard CaF2 unit cell

Ion u1, u2, u3 u1, u2, u3 u1, u2, u3 u1, u2, u3

Ca 0.00, 0.00, 0.00 0.00, 0.50, 0.50 0.50, 0.00, 0.50 0.50, 0.50, 0.00
F 0.25, 0.25, 0.25 0.25, 0.25, 0.75 0.25, 0.75, 0.25 0.25, 0.75, 0.75
F 0.75, 0.25, 0.25 0.75, 0.25, 0.75 0.75, 0.75, 0.25 0.75, 0.75, 0.75

To test the asymptotic dependence of the electrostatic field on ion array size, we
constructed 2N  x 2N  x 2N  arrays of these unit cells (96 N3 ions) with increasing values of
N . For each value of N the electrostatic potentials V(rk) at 1000 random points6 rk within a
central volume containing 51 ions was computed, where V(rk) is given by Eq. (1) and NT

= 96N3.
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V(rk ) =
qi

rk − rii=1

NT
∑ (1)

This potential is compared with the corresponding Madelung potentials VE(rk)
computed by the Ewald summation method (Appendix B). The deviation between these
two potentials is given by

∆(rk) = V(rk) − VE (rk ) (2)

The average deviation between the potentials is calculated as

∆ave =
1

1000
∆(rk )

k=1

1000
∑ (3)

and the rms variation of the deviations about their average is calculated as

∆ rms =
1

1000
[∆(rk ) −∆ ave]2

k=1

1000
∑ . (4)

Table II shows that the overall shift in the electrostatic field ∆ave and the rms error ∆rms

about that shifted value quickly reach asymptotic limits for arrays of only a few thousand
ions. Adding additional layers of unit cells does not significantly change the potential at the
1000 random points6 calculated using Eq (1).

Table II  Average and rms deviations between eq (1) and Ewald
potentials at 1000 random points6 for 2N  x 2N  x 2N  arrays of CaF2 unit
cells.

Unit cell array Number of ions ∆ave (eV) ∆rms (eV)

4 x 4 x 4 768 –8.432 17.171
10 x 10 x 10 12,000 –8.484 17.262
20 x 20 x 20 96,000 –8.492 17.276
44 x 44 x 44 1,022,208 –8.494 17.280
120 x 120 x 120 20,736,000 –8.495 17.281

Large arrays of Evjen unit cells

It is possible to eliminate the dipole moment of the CaF2 unit cell in Table I by
distributing the corner and face atoms over all equivalent symmetry points. The resulting
Evjen unit cell has zero dipole moment; the ion coordinates are listed in Table III.
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Table III. Location of ions in the Evjen CaF2 unit cell

Ion u1, u2, u3 u1, u2, u3 u1, u2, u3 u1, u2, u3

1/8 Ca 0.00, 0.00, 0.00 0.00, 0.00, 1.00 0.00, 1.00, 0.00 0.00, 1.00, 1.00
1/8 Ca 1.00, 0.00, 0.00 1.00, 0.00, 1.00 1.00, 1.00, 0.00 1.00, 1.00, 1.00
1/2 Ca 0.00, 0.50, 0.50 0.50, 0.00, 0.50 0.00, 0.50, 0.50
1/2 Ca 1.00, 0.50, 0.50 0.50, 1.00, 0.50 1.00, 0.50, 0.50

F 0.25, 0.25, 0.25 0.25, 0.25, 0.75 0.25, 0.75, 0.25 0.25, 0.75, 0.75
F 0.75, 0.25, 0.25 0.75, 0.25, 0.75 0.75, 0.75, 0.25 0.75, 0.75, 0.75

Evaluating Equation 1 for a 4 x 4 x 4 array of Evjen unit cells shows that for a central
51-atom CaF2 cluster the central 19 Ca ions have site potentials that are nearly the same
with an average value of –28.2 eV and the 32 F ions have an average site potential of 2.5
eV. These are both 8.3 eV lower than the values obtained by applying the Ewald method
(described in Appendix B), which are –19.9792 V for Ca and +10.7496 V for F. Similar
values occur when larger arrays are used. Table IV shows the average error in the
electrostatic field ∆ave and the rms variation ∆rms about that average value for 1000 random
points6 within the central 51 ion cluster. Comparison with Table II shows that the
elimination of the unit cell dipole moment greatly reduces ∆rms but has little effect on ∆ave.
Thus an array of Evjen CaF2 unit cells can reproduce the spatial shape of the crystal field
accurately, but the potential is shifted by a large value which affects calculations involving
ionization energy and electron affinity.

Table IV.  Average and rms deviations between eq (1) and the Ewald
potentials at 1000 random points6 for 2N  x 2N  x 2N  arrays of CaF2 Evjen
unit cells.

Unit cell array Number of ions ∆ave (eV) ∆rms (eV)

4 x 4 x 4 1,408 –8.265 6.29 x 10–4

10 x 10 x 10 22,000 –8.291 2.13 x 10–6

20 x 20 x 20 176,000 –8.295 3.34 x 10–8

44 x 44 x 44 2,141,392 –8.296 < 10–9

120 x 120 x 120 38,016,000 –8.296 < 10–9

Weighted point charge arrays
The Ewald summation method (Appendix B) evaluates the crystal field at a point r as a

spatial sum plus an inverse lattice sum. If α is sufficiently small, the inverse lattice sum can
be neglected, leaving only the real space sum of an array of point charges, where each
charge value qi is weighted by erfc(α |ri  – r|). Moreover, if α is so small that the difference
between erfc(α |ri  – r|) and erfc(α |ri|) is small for all r in a central region, then the crystal
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field in that region can be approximated as a spatial sum over the array of point charges qi

weighted by erfc(α |ri|).
This results in a modified form for equation (1)

V(rk ) =
′ q i

rk − rii=1

NT
∑ , where ′ q i = qi erfc αri( ) (5)

To test this idea, we first chose 1000 random points6 within the central 51-ion CaF2

cluster. Then we chose a value of α and constructed a series of 2N  x 2N  x 2N  arrays of
unit cells of increasing size. At each value of N  the eq (5) potential was computed at the
1000 random points and compared with their Ewald values. The process was terminated
when increasing the value of N  by 1 changed both ∆ave and ∆rms by less than 1 µV. The
results (Table V) show very slow convergence as the α value is decreased, and that an
impractically large number of point charges would be required to achieve an rms below 1
mV over the central 51-ion sphere. However, this result is important in that it provides a
general analytic expression for a point charge array that reproduces the Madelung field with
an error that approaches zero as α approaches zero. Because the difference between
erfc(α|ri  – r|) and erfc(α |ri|) is zero at r = 0, the error decreases for decreasing cluster size.
Note that Table V is the same for the standard CaF2 unit cell and the Evjen unit cell because
the Gaussian shielding eliminates the surface dipole layers.

Table V.  Averages and rms deviations between eq (1) and the Ewald
potentials for erfc(α|r|)-weighted ionic charges at 1000 random points6

within the central 51-ion cluster in the crystal CaF2

  α Unit cell array Number of ions ∆ave (eV) ∆rms (eV)
0.05 24 x 24 x 24 165,888 +0.41 4.08
0.03 38 x 38 x 38 658,464 +0.25 2.48
0.02 54 x 54 x 54 1,889,568 +0.16 1.66
0.015 70 x 70 x 70 4,116,000 +0.12 1.25
0.010 102 x 102 x 102 12,734,496 +0.080 0.831
0.005 220 x 220 x 220 127,776,000 –0.050 0.403

Charge determination using simultaneous linear equations

Several previously published approaches for determining optimized point charge arrays
have used a fixed array of point charges at their normal lattice positions7 or on spherical
surfaces8. In reference 7 the authors optimized the point charge values for six crystal types
and report a worst case rms error of 0.1 kcal/mole (4.3 mV), but do not provide details on
the size of the point charge array or the number of linear equations. In reference 8 the
authors define intersecting spherical surfaces surrounding the atoms of the cluster, divide
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the surfaces into several hundred surface elements, place a point charge at the center of each
surface element, and solve a set of linear equations to determine the charge values that
produce the correct (Ewald) potentials at those same points. These equations determine the
same number of unknown charge values as known potentials and do not constrain the total
charge or dipole moment to be zero. These authors found that the final accuracy was
significantly improved by choosing an initial array that resulted in a neutral solution. Their
best results were 0.17 mV rms error for the NaCl crystal and 2.2 mV rms error for
(Si3O4)4+ in the faujasite structure.

3. An Improved Method for Determining Optimized Point Charges

We sought an improved method that could automatically determine a point charge array
that would reproduce the Madelung potential within any chosen cluster of atoms for any
crystal whose unit cell information is known, and that would not require manual
intervention to modify the unit cell, to design surface segments, or to make the final total
charge zero. After some consideration and experimentation, we concluded that:

(1) As presented in references 7 and 8, varying only the point charge values and not
their positions allows a rapid solution by linear methods. We found that a good choice for
the point charge positions was at their normal crystallographic coordinates. Placement on a
sphere or at random points in space resulted in significantly poorer solutions.

(2) Much better accuracy is obtained within the atomic cluster (zone 1) if it is
surrounded by point charges (zone 2) whose values are not varied and whose site potentials
are included in the system of linear equations that determine the values of the outer (zone 3)
point charges.

(3) It is only necessary to include the site potentials of the zone 1 and zone 2 ions in the
equations. The accuracy within zone 1 is not improved when the potentials at other points
within zone 1 are included in the equations.

(4) As the sizes of zones 2 and 3 are increased, the accuracy at a large number of points
randomly chosen within zone 1 improves in a systematic way.

In detail, the method involves five steps.
Step 1
Compute the Cartesian space coordinates for a 2N  x 2N  x 2N  array of unit cells.

rn,i1 ,i2, i3
= (u1,n + i1)a1 + (u2,n + i2 )a2 + (u3,n + i3)a3

= xn,i1 ,i2 ,i3
yn,i1 ,i2 ,i3

zn,i1 ,i2 , i3( ) . (6)

The fractional unit cell coordinates for the nth ion in the unit cell are (u1,n   u2,n   u3,n).
The unit cell translation indices i1, i2, and i3 vary from –N  to N–1 so that the volume of the
unit cell array is centered at (0  0  0). The index n varies over the ions of the unit cell, from
1 to nmax. The total number of ions is NT = 8 N3 nmax. The translation vectors aj describe
the principal axes of the unit cell in Cartesian (x  y  z) coordinates.
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a j = a jx a jy a jz( ), j = 1,2,3  (7)

The charge values are given by

qn,i1, i2 , i3 = qn (8)

Step 2
The array generated in step 1 is divided into zone 1 (the central region containing the N1

ions of the atomic cluster of interest), zone 2 (N2 additional ions that together with zone 1
fill a spherical volume), and zone 3 (the N3 other point charges). The coordinates and
charge values are ri and qi, where i = 1 to N1 for zone 1, i = N1+1 to NC for zone 2 and i
= NC + 1 to NT for zone 3. NC = N1 + N2 and NT = N1 + N2 + N3.

Step 3
The Ewald formula (Appendix B) is used to compute the site potentials VE(rk) for all

point charges in zones 1 and 2.

Step 4
A set of linear equations is solved9 that (1) makes V(rk) (Eq 6) equal to the Ewald

values over zones 1 and 2 and (2) makes the charge and electric dipole moment of the total
array equal to zero.

There are NC = N1 + N2 equations that make the site potentials V(rk) of the ions in
zones 1 and 2 equal to their Ewald values:

qi + ∆ qi

rk − rii≠k

NT
∑ = VE (rk ) k = 1 to N1 + N2

∆qi = 0 i =1 to N1 + N2

(9)

The charge neutrality equation is:

qi + ∆ qi
i=1

NT
∑ = ∆q

i
i=NC +1

NT
∑ = 0 (10)

The three dipole equations are:

(qi + ∆ q
i
)

i=1

NT
∑ ri = 0 (11)

These N1 + N2 + 4 equations are solved for the N3 charge value changes ∆qi, where i
= N1 + N2 +1 to N1 +N2 + N3. Since N3 > N1 + N2 +4 (i.e. there are more parameters
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than equations), the minimum norm solution is chosen. The solution is thus the array
generated in step 1 where the zone 3 charge values have been modified by ∆qi.

Step 5
To check the solution, the average and rms deviations (∆ave and ∆rms in eqs 4 and 5)

between the lattice potentials V(rk) (Eq 1) and the Ewald potentials VE(rk) (Appendix B)
are computed for 1000 random points6 within zone 1. Vrms is the combined rms deviation
between V(rk) and VE(rk), given by

Vrms = ∆ave
2 + ∆ rms

2 =
1

1000
V (rk ) − VE(rk )[ ]2

k=1

1000
∑ (12)

4. Results

An example of the application of this method to the crystal CaF2 is shown in Table VI
for four values of NC and for three values of NT. The Vrms error (eq 12) at 1000 random
points in zone 1 decreases as NC and NT are increased, reaching 0.12 µV for NC = 514
and NT = 20,736. Several values were repeated a number of times to estimate the statistical
variation due to the random selection of the 1000 points at which the solution was checked.
The rms uncertainties are approximately 10% of Vrms.

Table VI.  rms deviation (mV) at 1000 random points in zone 1 for the crystal CaF2

(N1 = 62).

NT NC = 62 110 218 514

2,592 120 10.3 0.146 0.000312
6,144 107 9.14 0.141 0.000150
20,736 98.2 7.54 0.137 0.000123

The above method was applied to 33 crystals of varying symmetries to illustrate its
versatility and accuracy. Appendix A contains tables of Vrms for N1 ≈ 50 and several
values of NC = N1 + N2 and NT = N1 + N2 + N3 for each crystal. In all cases the accuracy
determined in step 5 steadily improves as the NC and NT are increased, reaching a typical
rms error of 1 µV in zone 1 for NC = 500 and NT = 10,000. These results are summarized
in Table VII for N1 ≈ 50 and  NC = 500.

As an example. for CaF2 with NC = 514 and NT = 20,736 the computer code requires
72 MBytes of memory and 9.7 minutes of computation time on a 450 MHz Pentium II
processor, mostly in step 4.
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Table VII.  Summary of results for 33 crystals for atomic cluster with N1 ≈ 50, and
NC ≈500. Vrms is the rms deviation between the field produced by the point charges
determined by the method described in Section 3 and their Ewald values.

Crystal NT Vrms (µV) Crystal NT Vrms (µV)

Al2O3 30,000 0.013 MgO 21,952 <0.001
AlPO4 18,000 1.57 MgAl2O4 12,096 0.449
BeAl2O4 28,000 0.534 NaI 1,728 <0.001
Bi4Ge3O12 16,416 0.114 NaNO3 30,000 0.194
Bi12GeO20 14,256 0.151 PbMgF6 24,000 0.216
CaCO3 30,000 0.145 PbF4 27,440 0.019
CaF2 20,736 0.123 PbWO4 24,000 0.240
CdWO4 20,736 0.863 SiO2 24,696 0.909
CsI 21,296 0.017 SrTiO3 20,480 0.005
Gd2SiO5 32,000 0.014 Y2O3 17,280 0.297
KMgF3 20,480 <0.001 YAlO3 20,000 0.449
La203 20,480 0.244 YVO4 24,000 0.936
LaF3 24,000 0.287 Y2OS2 20,000 0.014
LiCaAlF6 18,000 0.219 ZnO 23,328 0.334
Li2PbO3 24,000 0.763 ZnS 21,952 0.323
Lu3Al5O12 34,560 0.513 Zn2SiO4 27,216 0.006
MgF2 24,576 0.180

5. Comments

The method described here is able to determine point charge arrays that reproduce the
infinite crystal Madelung potential to an arbitrary mathematical accuracy throughout a
chosen volume of space for a large variety of crystals. However, several factors can make
the field within a physical crystal differ from the values computed by the Ewald summation
formulas: (1) the arrangement of ions on the surface of a finite crystal may not produce the
same internal field as the rest of the infinite crystal, (2) the physical crystal may have a
variety of defects, (3) the unit cell coordinates may be inaccurate, and (4) atom charges may
not be equal to their fully ionized values.

In the last case, if a ground-state molecular orbital calculation determines that the central
cluster atoms do not have their fully ionized formal charges, then the Madelung potentials
need to be recalculated using the atomic charges in the unit cell, and a new array of point
charges found and used in a new molecular orbital calculation. This process is repeated
until the atom charges are equal to the corresponding unit cell charges. When calculating
clusters with partially ionized atoms, it is also important to control the charge state of the
cluster by using a complete number of formula units.
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The method described takes advantage of the ability of all quantum chemistry programs
to evaluate the matrix elements for point charges such as nuclei. More rigorous approaches
that include the Ewald potential in the matrix elements have been described10,11 but have
not been implemented in existing quantum chemistry codes.

The computer codes used in this work may be obtained from the web address
cfi.lbl.gov/instrumentation.
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Appendix A Other Crystal Types

In the sections below, 33 different crystal types are described in terms of their space
group, symmetry, lattice parameters, and Madelung constant. For each crystal example x,
Table A1.x lists the non-equivalent atoms, their formal ionic charges (q), the number per
unit cell (M), their fractional unit cell coordinates (u1, u2, u3), and their site potentials VE
(in volts) computed by the Ewald method (Appendix B). Table A2.x lists the rms deviation
Vrms (in mV) between the potentials at 1000 random points6 within zone 1 and their Ewald
values after the charge values in zone 3 have been adjusted to make all zone 1 and zone 2
site potentials equal to their Ewald values.

Vrms =
1

1000
V(rk ) − VE (rk)[ ]2

k=1

1000
∑ V(rk ) =

qi

rk − rii =1

NT
∑ (A1)

In the examples below, zone 1 is the smallest sphere centered at 0, 0, 0 that contains at
least 50 ions. N1 is the number of ions in zone 1 and is between 50 and 71. Zone 2 is a
spherical shell surrounding zone 1 and contains N2 additional ions. Zone 3 contains the
remaining N3 ions. In the tables below, NC = N1 + N2 and NT = N1 + N2 + N3. Note that
NC is the number of ion site potentials used to determine the charge values in zone 3.

For six examples (Al2O3, MgO, SiO2, SrTiO3, Y2O3, and ZnO) the site potentials
computed here are compared with those of reference 12. Agreement is excellent and slight
differences are due to variations in the unit cells used.

The Madelung constant M appears often in the literature and is the binding energy of a
formula unit divided by twice the binding energy of charges +e and –e at a characteristic
distance R0 for the crystal, usually the distance between the closest pair of ions of different
sign, and given by

M(R0) =
R0

28.79952
fk qk

k=1

N
∑ VE(rk ), (A2)

where fk is the number of ions of type k in the formula unit, qk is in units of the electron
charge, R0 is in units of Å, and VE(rk) is in units of V. For five examples (Al2O3, CaF2,
La2O3, MgF2, SiO2) the Madelung constants computed here are compared with  the values
given in reference 13. Agreement is excellent and slight differences are due to variations in
the unit cells used.

Example 1: Al2O3
Space group 167: R -3 c;  Symmetry trigonal
Lattice parameters a = b = 4.763 Å, c = 13.000 Å, α = β = 90.000, γ = 120.000

Madelung constant 24.3259 for R(Al-O) = 1.8562 Å.
(Reference 13 lists 24.242 for R(Al-O) = 1.8478 Å.)
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Table A1.1 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Al  3 12 0.0000 0.0000 0.3522 -36.5483 (–36.587)*
O -2 18 0.3064 0.0000 0.2500 26.3575 (26.390)*

* Values in parenthesis from reference 12.

Table A2.1 rms deviation (mV) at 1000 random points in zone 1 (N1 = 52)

NT NC = 52 100 208 500

1,920 119. 29.9 51.2 229.
6,480 12.6 2.11 0.169 0.00296
30,000 2.01 0.227 0.00458 0.000013

Example 2: AlPO4
Space group 152 : P 31 2 1;  Symmetry trigonal
Lattice parameters a = b = 4.9420 Å, c = 10.9450 Å, α = β = 90.000 , γ = 120.000

Madelung constant 34.2373 for R (P-O1) = 1.4913 Å

Table A1.2 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Al 3 3 0.4661 0.0000 0.3333 -36.0361
P 5 3 0.4667 0.0000 0.8333 -60.1897
O1 -2 6 0.4126 0.2947 0.4007 31.7952
O2 -2 6 0.4128 0.2572 0.8816 31.2316

Table A2.2 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 200 502

1,152 510 101 421 131
3,888 486 36.7 1.41 0.187
18,000 390 44.7 1.19 0.00157

Example 3: BeAl2O4
Space group 62 : P n m a;  Symmetry orthorombic
Lattice parameters a = 9.4020 Å, b = 5.4750 Å, c = 4.4260 Å, α = β = γ = 90.000

Madelung constant 26.7873 for R(Be-O1) = 1.5661 Å
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Table A1.3 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Be  2 4 0.0928 0.2500 0.4339 -29.6640
Al1  3 4 0.0000 0.0000 0.0000 -35.5409
Al2  3 4 0.2728 0.2500 0.9949 -36.6267
O1 -2 4 0.0903 0.2500 0.7877 28.2541
O2 -2 4 0.4330 0.2500 0.2414 27.4711
O3 -2 8 0.1633 0.0154 0.2569 26.3300

Table A2.3 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 105 201 500

1,792 363 62.8 8.40 52.1
6,048 352 37.8 0.572 0.00112
28,000 245 31.3 0.364 0.000534

Example 4: Bi4Ge3O12
Space group 220: I -4 3 d;  Symmetry cubic
Lattice parameters a = b = c = 10.5240 Å, α = β = γ = 90.000

Madelung constant 90.5205 for R(Ge-O) = 1.7501 Å

Table A1.4 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Bi 3 16 0.0875 0.0875 0.0875 -30.1645
Ge 4 12 0.3750 0.0000 0.2500 -45.6327
O -2 48 0.0695 0.1267 0.2877 24.1679

Table A2.4 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 102 202 501

4,864 119. 10.5 0.336 0.000246
16,416 114. 11.9 0.265 0.000114

Example 5: Bi12GeO20
Space group 197: I 2 3;   Symmetry cubic
Lattice parameters a = b = c = 10.1530 Å, α = β = γ = 90.000

Madelung constant 127.4590 for R(Ge-O3) = 1.7638 Å
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Table A1.5 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Bi 3 24 0.1758 0.3185 0.0159 -29.9730
Ge  4 2 0.0000 0.0000 0.0000 -42.1754
O1 -2 24 0.1348 0.2513 0.4859 19.4117
O2 -2 8 0.1943 0.1943 0.1943 19.9025
O3 -2 8 0.8997 0.8997 0.8997 26.0375

Table A2.5 rms deviation (mV) at 1000 random points in zone 1 (N1 = 61)

NT NC = 61 101 205 507

4,224 48.7 5.65 0.389 0.000499
14,256 38.8 4.94 0.267 0.000151

Example 6: CaCO3
Space group 167: R -3 c;  Symmetry trigonal
Lattice parameters a = b = 4.9910 Å, c = 17.0620 Å,  α = β = 90.000, γ = 120.000

Madelung constant 20.2527 for R(C-O) = 1.2842 Å

Table A1.6 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Ca 2 6 0.0000 0.0000 0.0000 -21.1561
C 4 6 0.0000 0.0000 0.2500 -56.1801
O -2 18 0.2573 0.0000 0.2500 31.1936

Table A2.6 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 111 201 508

1,920 121 46.0 101 162
6,480 121 8.01 0.281 0.0420
30,000 276 6.40 0.426 0.000145

Example 7: CaF2

Space group 225: F m -3 m;  Symmetry cubic
Lattice parameters a = b = c = 5.453 Å, α = β = γ = 90.000

Madelung constant 5.03879 for R(Ca-F) 2.3612 Å
Reference 13 lists 5.03879 for R(Ca-F) = 2.360352 Å
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Table A1.7 Non-equivalent atoms

Atom q u1 u2 u3 VE(V)

Ca  2 0.0000 0.0000 0.0000 -19.9792
F –1 0.2500 0.2500 0.2500 10.7496

Table A2.7 rms deviation (mV) at 1000 random points in zone 1 (N1 = 62)

NT NC = 62 110 218 514

2,592 120. 10.3 0.146 0.000312
6,144 107. 9.14 0.141 0.000150
20,736 98.2 7.54 0.137 0.000123

Example 8: CdWO4
Space group 13: P 12/c 1;  Symmetry monoclinic
Lattice parameters a = 5.028 Å, b = 5.862 Å, c = 5.067 Å, α = γ = 90.00, β = 91.50

Madelung constant 38.2524 for R(W-O2) = 1.7828 Å

Table A1.8 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Cd 2 2 0.5000 0.6977 0.2500 –25.6497
W 6 2 0.0000 0.1785 0.2500 –59.2878
O1 –2 4 0.2030 0.0980 0.9490 28.5372
O2 –2 4 0.2420 0.3720 0.3830 24.1892

Table A2.8 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 202 500

2,592 329 65.3 1.84 0.00247
6,144 333 52.7 1.34 0.00130
20,736 291 49.5 1.17 0.000863

Example 9: CsI
Space group 221: P m -3 m;  Symmetry cubic
Lattice parameters a = b = c = 4.5680 Å, α = β = γ = 90.000

Madelung constant 1.7627 for R(Cs-I) = 3.9560 Å
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Table A1.9 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Cs 1 1 0.0000 0.0000 0.0000 –6.4161
I –1 1 0.5000 0.5000 0.5000 6.4161

Table A2.9 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 113 229 531

1,024 10.3 0.247 0.0295 †
5,488 10.6 0.0471 0.0141 0.000024
21,296 10.6 0.0826 0.0114 0.000017

† underdetermined system, number of equations = NC + 4 = 535, number of parameters =
NT – NC = 493

Example 10: Gd2 SiO5

Space group 14: P 21/c  Symmetry monoclinic
Lattice parameters a = 9.1200 Å, b = 7.0600 Å, c = 6.7300 Å, α = γ = 90.00, β = 107.60

Madelung constant 34.3842 for R(Si-O4) = 1.5959 Å

Table A1.10 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Gd1  3 4 0.1145 0.1460 0.4163 -31.0448
Gd2  3 4 0.5246 0.6245 0.2343 -29.5590
Si  4 4 0.2020 0.5876 0.4598 -48.4458
O1 -2 4 0.2030 0.4302 0.6453 25.0875
O2 -2 4 0.1317 0.4587 0.2520 24.7592
O3 -2 4 0.3839 0.6361 0.5059 26.9557
O4 -2 4 0.0941 0.7681 0.4507 24.3877
O5 -2 4 0.3837 0.3782 0.0487 21.2586

Table A2.10 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 200 502

2,048 40.0 3.06 0.579 0.0874
6,912 10.5 1.62 0.0387 0.000052
32,000 4.85 0.602 0.0142 0.000014

Example 11: KMgF3
Space group 221: P m -3 m;  Symmetry cubic
Lattice parameters a = b = c = 3.9800 Å, α = β = γ = 90.000

Madelung constant 6.1888 for R(Mg-F) = 1.9900 Å
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Table A1.11 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

K 1 1 0.0000 0.0000 0.0000 -9.7456
Mg 2 1 0.5000 0.5000 0.5000 -22.3911
F -1 3 0.5000 0.5000 0.0000 11.6789

Table A2.11 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 111 209 517

1,080 1.36 0.120 0.200 1,347.
5,000 0.410 0.0383 0.000882 0.000003
20,480 0.146 0.0130 0.000269 <1.0e-6

Example 12: La203
Space group 164: P -3 m 1;  Symmetry trigonal
Lattice parameters a = b = 3.9380 Å, c = 6.1360 Å, α = β = 90.000, γ = 120.000

Madelung constant 24.1492 for R(La-O1) = 2.3653 Å
(Reference 13 lists 24.179 for R(La-O1) = 2.3711 Å)

Table A1.12 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

La 3 2 0.3333 0.6667 0.2467 -29.0000
O1 -2 2 0.3333 0.6667 0.6471 20.1666
O2 -2 1 0.0000 0.0000 0.0000 19.6842

Table A2.12 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 111 201 502

1,080 189. 23.5 67.6 734.
5,000 199. 10.3 1.45 0.000427
20,480 180. 9.70 0.807 0.000244

Example 13: LaF3
Space group 165: P -3 c 1;  Symmetry trigonal
Lattice parameters a = b = 7.1850 Å, c = 7.3510 Å, α = β = 90.000, γ = 120.000

Madelung constant 27.9922 for R(La-F2) = 2.4171 Å
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Table A1.13 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

La  3 6 0.6598 0.0000 0.2500 -27.2026
F1 -1 12 0.3659 0.0536 0.0813 9.6371
F2 -1 4 0.3333 0.6666 0.1859 10.2515
F3 -1 2 0.0000 0.0000 0.2500 10.3769

Table A2.13 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 208 504

1,536 88.4 25.4 0.600 2.08
5,184 76.2 21.9 0.372 0.000353
24,000 69.4 16.8 0.251 0.000287

Example 14: LiCaAlF6
Space group 163: P -3 1 c;  Symmetry trigonal
Lattice parameters a = b = 5.0070 Å, c = 9.6420 Å, α = β = 90.000, γ = 120.000

Madelung constant 14.2988 for R(Al-F) = 1.8044 Å

Table A1.14 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Li  1 2 0.3333 0.6667 0.2500 -13.5070
Ca  2 2 0.0000 0.0000 0.0000 -19.4568
Al  3 2 0.6667 0.3333 0.2500 -32.3486
F -1 12 0.3769 0.0311 0.1434 13.1252

Table A2.14 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 105 213 504

1,152 96.3 48.7 90.6 101.
3,888 103. 13.4 0.398 0.00640
18,000 122. 15.0 0.148 0.000219

Example 15: Li2PbO3
Space group 15: C 2/c;  Symmetry monoclinic
Lattice parameters a = 5.4450 Å, b = 9.2610 Å, c = 5.4760 Å, α = γ = 90.00, β = 111.20

Madelung constant 23.4689 for R(Li-O1) = 2.0904 Å

page 19



J Chem Phys, vol. 112, pp. 2074-2081, 2000.

Table A1.15 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Li1  1 4 0.0000 0.4268 0.2500 -15.1777
Li2  1 4 0.0000 0.7618 0.2500 -15.0677
Pb  4 4 0.0000 0.0897 0.2500 -38.3036
O1 -2 8 0.2381 0.0793 0.0135 23.3099
O2 -2 4 0.2500 0.2500 0.500 23.3179

Table A2.15 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 200 501

1,536 193 59.2 8.85 370
5,184 163 25.4 1.56 0.00315
24,000 183 15.1 0.762 0.000763

Example 16: Lu3Al5O12
Space group 220: I -4 3 d;  Symmetry cubic
Lattice parameters a = b = c = 11.9060 Å, α = β = γ = 90.000

Madelung constant 87.4746 for R(Al2-O) = 1.7597 Å

Table A1.16 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Lu  3 24 0.1250 0.0000 0.2500 -31.0849
Al1  3 16 0.0000 0.0000 0.0000 -37.8197
Al2  3 24 0.3750 0.0000 0.2500 -36.8592
O -2 96 0.9706 0.0537 0.1509 24.7180

Table A2.16 rms deviation (mV) at 1000 random points in zone 1 (N1 = 57)

NT NC = 57 105 225 521

1,280 545 51.9 0.877 0.251
10,240 321 38.3 0.622 0.000601
34,560 364 32.4 0.577 0.000513

Example 17: MgF2
Space group 136: P 42 m n m;  Symmetry tetragonal
Lattice parameters a = b = 4.628 Å, c = 3.045 Å, α= β = γ= 90.000

Madelung constant 4.7894 for R(Mg-F) = 1.9844 Å
(Reference 13 lists 4.762 for R(Mg-F) = 1.9677 Å)
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Table A1.17 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Mg  2 2 0.0000 0.0000 0.0000 –22.0466
F -1 4 0.3032 0.3032 0.0000 12.7071

Table A2.17 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 101 201 500

1,296 229 26.4 6.65 178
6,000 207 23.6 0.531 0.000188
24,576 217 18.8 0.415 0.000180

Example 18: MgO
Space group 225: F m -3 m;  Symmetry cubic
Lattice parameters a = b = c = 4.2170 Å, α = β = γ = 90.000

Madelung constant 6.9903 for R(Mg-O) = 2.1085 Å

Table A1.18 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Mg  2 4 0.0000 0.0000 0.0000 -23.8697 (–23.902)*
O -2 4 0.5000 0.5000 0.5000 23.8697 (–23.902)*

* Values in parenthesis from reference 12.

Table A2.18 rms deviation (mV) at 1000 random points in zone 1 (N1 = 57)

NT NC = 57 123 203 515

1,728 0.269 0.00870 0.00076 0.595
4,096 0.0878 0.00253 0.000241 0.000002
21,952 0.00888 0.000265 0.000028 <1.0e-6

Example 19: MgAl2O4
Space group 227: F d 3 m;  Symmetry cubic
Lattice parameters a = b = c = 8.0890 Å, α = β = γ = 90.000
Madelung constant 31.5872 for R(Al-O) = 1.9207 Å

Table A1.19 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Mg  2 8 0.0000 0.0000 0.0000 -25.7734
Al  3 16 0.6250 0.6250 0.6250 -35.6216
O -2 32 0.3873 0.3873 0.3873 26.0437
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Table A2.19 rms deviation (mV) at 1000 random points in zone 1 (N1 = 58)

NT NC = 58 106 216 500

3,584 156 12.5 0.0998 0.000425
12,096 142 9.08 0.0422 0.000449

Example 20: NaI
Space group Fm 3m:   Symmetry; cubic
Lattice parameters a = b = c = 6.470 Å, α = β =  γ = 90.000

Madelung constant 1.7476 for R(Na-I) = 3.2350 Å

Table A1.20 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Na  1 4 0.0000 0.0000 0.0000 –7.7789
I -1 4 0.5000 0.5000 0.5000 7.7789

Table A2.20 rms deviation (mV) at 1000 random points in zone 1 (N1 = 56)

NT NC = 56 136 208 552

1,728 0.00235 0.000040 <1.0e-6 <1.0e-6
4.096 0.000720 0.000013 <1.0e-6 <1.0e-6
21,952 0.000074 <1.0e-6 <1.0e-6 <1.0e-6

Example 21: NaNO3
Space group 167: R -3 c;  Symmetry trigonal
Lattice parameters a = b = 5.0700 Å, c = 16.8200 Å, α = β = 90.000, γ = 120.000

Madelung constant 24.0255 for R(N-O) = 1.2569 Å

Table A1.21 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Na  1 6 0.0000 0.0000 0.0000 -13.0920
N  5 6 0.0000 0.0000 0.2500 -65.1918
O -2 18 0.2479 0.0000 0.2500 35.2450

Table A2.21 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 105 201 508

1,920 104 44.2 59.9 75.3
6,480 104 8.48 0.318 0.0107
30,000 108 8.30 0.462 0.000194
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Example 22: PbMgF6

Space group 148: R –3;  Symmetry trigonal
Lattice parameters a = b = 5.2500 Å, c = 13.9600 Å, α = β = 90.000, γ = 120.000

Madelung constant 17.7236 for R(Mg-F) = 1.9755 Å

Table A1.22 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Mg  2 3 0.0000 0.0000 0.0000 -23.5986
Pb  4 3 0.0000 0.0000 0.5000 -34.5433
F -1 18 0.3190 0.0180 -0.0800 12.1678

Table A2.22 rms deviation (mV) at 1000 random points in zone 1 (N1 = 55)

NT NC = 55 103 207 500

1,536 104 21.9 51.7 60.5
5,184 79.9 8.05 0.439 0.00991
24,000 107 9.10 0.206 0.000216

Example 23: PbF4

Space group 139: I 4/m m m;  Symmetry tetragonal
Lattice parameters a = b = 4.2470 Å, c = 8.0300 Å, α = β = γ = 90.000

Madelung constant 13.2381 for R(Pb-F2) = 1.9673 Å

Table A1.23 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Pb  4 2 0.0000 0.0000 0.0000 -36.1738
F1 -1 4 0.0000 0.5000 0.0000 13.7528
F2 -1 4 0.0000 0.0000 0.2450 10.7937

Table A2.23 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 109 203 509

2,160 16.6 2.58 0.186 86.2
5,120 13.0 2.34 0.0388 0.000056
27,440 10.8 2.26 0.0333 0.000019

Example 24: PbWO4
Space group 88: I 41/a;  Symmetry tetragonal
Lattice parameters a = b = 5.5000 Å, c = 12.1200 Å, α = β = γ = 90.000

Madelung constant 37.1142 for PbWO4 based on R(W-O) = 1.7531 Å
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Table A1.24 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Pb  2 4 0.5000 0.7500 0.1250 -23.7320
W  6 4 0.0000 0.2500 0.1250 -59.1325
O -2 16 0.2210 0.4010 0.3890 25.9323

Table A2.24 rms deviation (mV) at 1000 random points in zone 1 (N1 = 52)

NT NC = 52 100 202 500

1,536 238 34.3 2.28 24.8
5,184 247 20.8 0.527 0.00130
24,000 198 16.5 0.484 0.000240

Example 25: SiO2
Space group 152: P 31 2 1;  Symmetry trigonal
Lattice parameters a = b = 4.9650 Å, c = 5.4240 Å, α = β = 90.000, γ = 120.000

Madelung constant 17.6054 for SiO2 based on R(Si-O) = 1.6014Å
(Reference 13 lists 17.609 for R(Si-O) = 1.6191 Å)

Table A1.25 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Si  4 3 0.5248 0.0000 0.3333 -48.3226 (–48.384)*
O -2 6 0.1570 0.4160 -0.1232 30.8302 (30.803)*

* Values in parenthesis from reference 12.

Table A2.25 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 202 500

1,944 525 69.7 1.81 0.280
4,608 811 59.5 1.28 0.00197
24,696 599 48.8 1.05 0.000909

Example 26: SrTiO3
Space group 195: P 2 3;  Symmetry cubic
Lattice parameters a = b = c = 3.8970 Å, α = β = γ = 90.000

Madelung constant 24.7550 for R(Ti-O) = 1.9485 Å
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Table A1.26 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Sr 2 1 0.5000 0.5000 0.5000 -19.9063
Ti 4 1 0.0000 0.0000 0.0000 -45.7360 (–45.642)*
O –2 3 0.5000 0.0000 0.0000 23.8552 (23.806)*

* Values in parenthesis from reference 12.

Table A2.26 rms deviation (mV) at 1000 random points in zone 1 (N1 = 57)

NT NC = 57 111 221 511

1,080 13.1 0.715 0.0528 †
5,000 4.36 0.181 0.00518 0.000016
20,480 1.69 0.0614 0.00184 0.000005

† poorly determined system, number of equations = NC + 4 = 516, number of parameters
= NT – NC = 569

Example 27: Y2O3
Space group 206: I a 3;  Symmetry cubic
Lattice parameters a = b = c = 10.6040 Å, α = β = γ = 90.000

Madelung constant 49.4171 for R(Y1-O) = 2.2475 Å

Table A1.27 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Y1  3 8 0.2500 0.2500 0.2500 -31.7976 *
Y2  3 24 0.9672 0.0000 0.2500 -30.5650 *
O -2 48 0.3890 0.1540 0.3780 21.8968 (21.892)*

* Values in parenthesis for O from reference 12 and the weighted average of the two non-
equivalent Y sites is given as –31.113 V

Table A2.27 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 104 206 506

5,120 177 30.7 0.481 0.000395
17,280 153 29.6 0.381 0.000297

Example 28: YAlO3
Space group 62: P n m a;  Symmetry orthorombic
Lattice parameters a = 5.3300 Å, b = 7.3750 Å, c = 5.1800 Å, α = β = γ = 90.000

Madelung constant 22.9680 for R(Al-O1) = 1.9015 Å
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Table A1.28 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Y  3 4 0.0526 0.2500 0.9896 -30.3846
Al  3 4 0.0000 0.0000 0.5000 -38.1634
O1 -2 4 0.4750 0.2500 0.0860 23.9211
O2 -2 8 0.2930 0.0440 0.7030 23.5958

Table A2.28 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 200 500

1,280 279 48.3 2.10 11.2
4,320 238 28.4 1.46 0.000903
20,000 211 26.9 1.38 0.000449

Example 29: YVO4
Space group 141: I 41/a m d;  Symmetry tetragonal
Lattice parameters a = b = 7.1180 Å, c = 6.2890 Å, α = β = γ = 90.000

Madelung constant 33.8944 for R(V-O) = 1.7086 Å

Table A1.29 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Y  3 4 0.0000 0.7500 0.1250 -32.2259
V  5 4 0.0000 0.2500 0.3750 -53.1295
O -2 16 0.0000 0.4342 0.2008 26.1235

Table A2.29 rms deviation (mV) at 1000 random points in zone 1 (N1 = 52)

NT NC = 52 100 202 500

1,536 169 62.6 1.88 0.0890
5,184 143 46.1 1.34 0.00143
24,000 114 40.0 0.887 0.000936

Example 30: Y2OS2
Space group 14: P 21/C;  Symmetry monoclinic
Lattice parameters a = 8.2550 Å,  b = 6.8850 Å, c = 6.8530 Å, α = γ = 90.00, β = 99.600

Madelung constant 21.9953 for R(Y2-O) = 2.2491 Å
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Table A1.30 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Y1  3 4 0.5760 0.6445 0.8209 -27.8063
Y2 3 4 0.1380 0.5546 0.7496 -26.9736
O –2 4 0.3837 0.0855 0.3513 24.1274
S1 –2 4 0.6807 0.1327 0.0750 17.0612
S2 -2 4 0.0760 0.2766 0.0303 17.4645

Table A2.30 rms deviation (mV) at 1000 random points in zone 1 (N1 = 50)

NT NC = 50 100 200 500

1,280 20.3 3.92 0.449 1.58

4,320 9.83 1.64 0.0589 0.000046

20,000 4.58 0.492 0.0231 0.000014

Example 31: ZnO (hexagonal)
Space group 186: P 63 m c;  Symmetry hexagonal
Lattice parameters a = b = 3.2420 Å, c = 5.1880 Å, α = β = 90.000, γ = 120.000

Madelung constant 6.5531 for R(Zn-O) = 1.9690 Å

Table A1.31 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Zn  2 2 0.3333 0.6667 0.0000 -23.9616 (–24.024)*
O -2 2 0.3333 0.6667 0.3819 23.9616 (24.024)*

* Values in parenthesis from reference 12.

Table A2.31 rms deviation (mV) at 1000 random points in zone 1 (N1 = 51)

NT NC = 51 103 204 504

2,048 237 26.9 0.338 24.9
6,912 251 22.6 0.229 0.000416
23,328 239 19.2 0.215 0.000334

Example 32: ZnS (cubic)
Space group 186: P 63 m c;  Symmetry hexagonal
Lattice parameters a = b = 3.8230 Å, c = 6.2610 Å, α = β = 90.000, γ = 120.000

Madelung constant 6.5522 for R(Zn-S) = 2.3448 Å
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Table A1.32 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Zn  2 4 0.3333 0.6667 0.0000 -20.1194
S -2 4 0.3333 0.6667 0.3748 20.1194

Table A2.32 rms deviation (mV) at 1000 random points in zone 1 (N1 = 71)

NT NC = 71 123 239 525

1,728 45.5 5.06 0.130 0.0444
4,096 56.1 4.19 0.0472 0.000455
21,952 56.9 3.10 0.0213 0.000323

Example 33: Zn2SiO4
Space group 148: R –3;  Symmetry trigonal
Lattice parameters a = b = 14.27 Å, c = 8.95 Å, α = β = 90.000, γ = 120.000

Madelung constant 55.8729 for R(Si-O2) = 1.5837 Å

Table A1.33 Non-equivalent atoms

Atom q M u1 u2 u3 VE(V)

Zn1  2 18 0.2151 0.1920 0.5814 -24.3286
Zn2  2 18 0.2091 0.1917 0.9153 -24.0291
Si  4 18 0.2117 0.1956 0.2494 -48.1408
O1 -2 18 0.3220 0.3178 0.2490 27.6386
O2 -2 18 0.2056 0.1283 0.1036 28.0881
O3 -2 18 0.2092 0.1256 0.3926 27.2840
O4 -2 18 0.2164 0.1104 0.7495 26.3642

Table A2.33 rms deviation (mV) at 1000 random points in zone 1 (N1 = 54)

NT NC = 54 102 204 504

1,008 34.6 7.16 28.1 †
8,064 4.28 0.345 0.0126 0.000058
27,216 1.71 0.149 0.00455 0.000006

† poorly determined system, number of equations = NC + 4 = 508, number of parameters
= NT – NC = 504
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Appendix B The Ewald Summation Method

The Ewald method for computing the binding energy Wk of an ion of charge qk and
position rk in an infinite periodic crystal lattice requires computing three quantities:

The first is Wkr,  the binding energy of the kth ion due to the infinite array of other ions
of charge qi and position ri, each shielded by a Gaussian charge distribution exp(-α|r–ri|

2)
having charge –qi. Due to the shielding, this spatial sum converges rapidly.

The second is Wkf, the binding energy of the kth ion due to the infinite array of
Gaussian charge distributions described above plus an additional Gaussian distribution of
charge –qk at rk. Since this sum is over a complete, periodic array of identical Gaussian
distributions, it can be evaluated in the Fourier (reciprocal lattice) space, where the sum is
over a single Gaussian and converges rapidly.

The third is Wkc, the binding energy of the kth ion due to the additional Gaussian
charge distribution that was added in computing Wkf.

These three terms are combined to compute the binding energy of the point charge qk:

Wk = Wk
r − Wk

f + Wk
c

The Cartesian space coordinates rn, i1 ,i2 ,i3 = xn,i1,i2 ,i3 yn, i1 ,i2 ,i3 zn,i1 ,i2 ,i3( )  of the nth
ion in the (i1  i2  i3) unit cell can be computed from the fractional unit cell coordinates (un1
un2   un3) and the three unit cell translation vectors aj, where

a j = a jx a jy a jz( ), j = 1,2,3

rn,i1 ,i2, i3 = (u1,n + i1)a1 + (u2,n + i2 )a2 + (u3,n + i3)a3

The Ewald real space sum for the binding energy of an ion at rk is given by

Wk
r = qk qn

erfc(α | rk − rn,i1 ,i2 ,i3 |)

| rk − rn,i1 ,i2 ,i3 |i3= imin

imax
∑

i2 = imin

imax
∑

i1=imin

imax
∑

n=1

nmax
∑

where

erfc(x) =
2

π
e− t2 dt

x

∞
∫

and the sums are carried out over all non-negligible terms. The index n varies over the ions
of the unit cell, and the indices i1, i2, and i3 describe the periodic translation of the unit cell
along its principal axes.

The Ewald reciprocal lattice sum for the binding energy of an ion at rk is given by

Wk
f =

−qk

πV
qn

exp(−π 2 | fm1,m2 ,m3 |2 /α2 )

| fm1 ,m2,m3
|2m3= mmin

mmax
∑

m2=mmin

mmax
∑

m1=mmin

mmax
∑

n=1

nmax
∑ ×

cos[2πfm1 ,m2 ,m3
• (rk − rn,0,0,0 )]
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where the sums are carried out over all reciprocal lattice points for which the exponential is
non-negligible.

The unit cell volume is given by V = a1 •(a2 × a3)  and the coordinates in inverse
lattice space are given by

fm1 ,m2 ,m3
= m1 m2 m3( )

b11 b12 b13

b21 b22 b23

b31 b32 b33

 

 

 
 

 

 

 
 

The three reciprocal lattice vectors are given by

b j = bj1 b j2 b j3( ) , where b1 = a2 × a3 / V b2 = a1 × a3 / V b3 = a1 × a2 / V

The Ewald term for the binding energy of an ion at coordinate rk = (xk  yk  zk) by its
own Gaussian of charge –qk is given by

Wk
c =

−αqk
2

π
To determine the electrostatic potential Vr at any point r, a test charge q → 0 is placed

at that point (and similar infinitesimal charges are placed at corresponding points in all other
unit cells) and the equations above reduce to

Vr = qn

erfc(α | r − rn,i1,i2 ,i3
|)

| r − rn,i1 ,i2 ,i3 |i3= imin

imax
∑

i2 =imin

imax
∑

i1= imin

imax
∑

n=1

N
∑ +

1

πV
qn

exp(−π2 fm1,m2 ,m3

2
/ α2 )

fm1 ,m2 ,m3

2
m3 =mmin

mmax
∑

m2 =mmin

mmax
∑

m1=mmin

mmax
∑

n=1

N
∑ ×

cos[2π fm1 ,m2 ,m3
• (r − rn,0,0,0 )]

The details of the derivations have been described in a textbook14 and in a recent
review article15.

The relative convergence rates for the real space sums and the reciprocal lattice sums is
controlled by α. For large values of α the Gaussian charge distribution is narrow and the
inverse lattice sum converges more slowly.  For small values of α the Gaussian charge
distribution is wide and the real space sum converges more slowly. It is important that the
summation limits for these sums are sufficiently large to guarantee convergence. When this
condition is met, the sum Wk is independent of the value of α.

To convert the binding energy Wk from (electron charge)2/Å to eV, or the potential
from electron charge/Å to V, multiply by 14.39976.
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